
karton Documentation
Release 5.0.1

CERT Polska

Feb 06, 2023

KARTON REFERENCE:

1 Breaking changes 3
1.1 What is changed in Karton 5.0.0 . 3
1.2 What is changed in Karton 4.0.0 . 4
1.3 What is changed in Karton 3.0.0 . 4

2 Getting started 7
2.1 Installation . 7
2.2 Configuration . 7
2.3 Docker Compose development setup . 8
2.4 Writing your first Producer and Consumer . 8
2.5 Command-line interface (CLI) . 9

3 Karton service examples 11
3.1 Producer services . 11
3.2 Consumer services . 11
3.3 Karton services (Producer + Consumer) . 13
3.4 Log consumer . 14

4 Headers, payloads and resources 15
4.1 Task headers . 15
4.2 Filter patterns . 16
4.3 Task payload . 17
4.4 Resource objects . 18
4.5 Directory resource objects . 19
4.6 Persistent payload . 20

5 Configuration and customization 23
5.1 Basic configuration . 23
5.2 Karton System configuration . 24
5.3 Extending configuration . 25
5.4 Customizing ready-made Karton services . 26

6 Advanced concepts 29
6.1 Routed and unrouted tasks (task forking) . 29
6.2 Task tree (analysis) and task life cycle . 30
6.3 Handling logging . 30
6.4 Consumer queue persistence . 30
6.5 Prioritized tasks . 31
6.6 Extending configuration . 31
6.7 Passing tasks to the external queue . 33

i

7 Writing unit tests 35
7.1 Basic unit test . 35
7.2 Testing resources . 36

8 Karton API reference 37
8.1 karton.core.Producer, karton.core.Consumer . 37
8.2 karton.core.LogConsumer . 40
8.3 karton.core.Resource . 40
8.4 karton.core.Task . 44
8.5 karton.core.Config . 47

9 Indices and tables 49

Python Module Index 51

Index 53

ii

karton Documentation, Release 5.0.1

Karton is a library made for analysis backend orchestration. Allows you to build flexible malware analysis pipelines
and attach new Karton Services with ease.

This is achieved by combining powers of a few existing solutions, karton just glues them together and allows you to
have some sane amount of abstraction over them.

Karton ecosystem consists of:

• Redis - store used for message exchange between Karton subsystems

• Temporary object storage compatible with Amazon S3 API, holds all the heavy objects (aka Resources) like
samples, analyses or memory dumps. The recommended one is MinIO.

Task routing and data exchange is achieved with the help of Karton-System - core of the Karton, which routes the
tasks and keeps everything in order (task lifecycle, garbage collection etc.)

from karton.core import Karton, Task, Resource

class GenericUnpacker(Karton):
"""
Performs sample unpacking
"""
identity = "karton.generic-unpacker"
filters = [

{
"type": "sample",
"kind": "runnable",
"platform": "win32"

}
]

def process(self, task: Task) -> None:
Get sample object
packed_sample = task.get_resource('sample')
Log with self.log
self.log.info(f"Hi {packed_sample.name}, let me analyze you!")
...
Send our results for further processing or reporting
task = Task(

{
"type": "sample",
"kind": "raw"

}, payload = {
"parent": packed_sample,
"sample": Resource(filename, unpacked)

})
self.send_task(task)

if __name__ == "__main__":
Here comes the main loop
GenericUnpacker.main()

KARTON REFERENCE: 1

https://www.redis.io/
https://github.com/minio/minio

karton Documentation, Release 5.0.1

2 KARTON REFERENCE:

CHAPTER

ONE

BREAKING CHANGES

This chapter will describe significant changes introduced in major version releases of Karton. Versions before 4.0.0
were not officially released, so they have value only for internal purposes. Don’t worry about it if you are a new user.

1.1 What is changed in Karton 5.0.0

Karton-System and core services are still able to communicate with previous versions.

• Changed name of karton.ini section that contains S3 client configuration from [minio] to [s3].

In addition to this, you need to add a URI scheme to the address field and remove the secure field. If secure
was 0, correct scheme is http://. If secure was 1, use https://.

- [minio]
+ [s3]
access_key = karton-test-access
secret_key = karton-test-key

- address = localhost:9000
+ address = http://localhost:9000
bucket = karton

- secure = 0

v5.0.0 maps [minio] configuration to correct [s3] configuration internally, but [minio] scheme is considered
deprecated and can be removed in further major release.

• Karton library uses Boto3 library as a S3 client instead of Minio-Py underneath. You may want to check if your
code relies on exceptions thrown by previous S3 client.

• karton.core.Config interface is changed. config, minio_config and redis_config attributes are no
longer available.

• We noticed lots of issues caused by calling factory method main() on instance instead of class, which can be
misleading (:py:meth:karton.core.base.KartonBase.main actually creates own instance of Karton service
internally, so the initialization is doubled). To notice these errors more quickly, we prevented main() call on
KartonBase instance

if __name__ == "__main__":
MyConsumer.main() # correct

if __name__ == "__main__":
MyConsumer().main() # throws TypeError

3

https://github.com/boto/boto3
https://github.com/minio/minio-py

karton Documentation, Release 5.0.1

• karton.core.Consumer.process no longer accepts no arguments. First argument of this method is the in-
coming task.

Correct
class MyConsumer(Karton):

def process(self, task: Task) -> None:
...

Wrong from v5.0.0
class MyConsumer(Karton):

def process(self) -> None:
...

1.2 What is changed in Karton 4.0.0

Karton-System and core services are still compatible with both 3.x and 2.x versions.

• SHA256 is evaluated always when Resource is created. If you already know it and don’t want it to be recalculated,
pass the hash to the constructor via sha256= argument.

sample = Resource(path="sample.exe", sha256="2e5d...")

• DirectoryResource has been removed in favor of Resource.from_directory. Resources created us-
ing this method are still deserialized to the RemoteDirectoryResource form by older Karton versions.
RemoteDirectoryResource has been merged into RemoteResource, so all resources containing Zip files can
be unzipped even if they were created as regular files.

• Asynchronous tasks has been removed. Busy waiting should be used instead.

• All crashed tasks are preserved in Crashed state until they are removed by Karton-System (default is 72 hours)
or retried by user. Keep in mind that they hold all the referenced resources, so keep an eye on that queue.

1.3 What is changed in Karton 3.0.0

Karton-System and other core services in 3.x are compatible with 2.x. But if you want to use 3.x in Karton service
code, all core services need to be upgraded first.

The good news:

• Karton subsystems expose the library version and class docstring in karton.binds

• Config is explicit and get by default from karton.ini file (yup, it’s karton.ini not config.ini). But you
can still provide another path if you want.

• There is no need to provide a suffix ".test" as a part of identity for non-persistent consumer queues. Just set
persistent=False in your Karton subsystem class

• You can provide identity as an argument.

So, instead of that code:

Consumer part

class Subsystem(Karton):
(continues on next page)

4 Chapter 1. Breaking changes

karton Documentation, Release 5.0.1

(continued from previous page)

identity = "karton.subsystem.test"
filters = {...}

config = Config("config.ini")
subsystem = Subsystem(config).loop()

Producer part

class NamedProducer(Producer):
identity = "karton.named-producer"

config = Config("config.ini")
producer = NamedProducer(config).send_task(...)

You can write that code:

Consumer part

class Subsystem(Karton):
identity = "karton.subsystem"
filters = {...}
persistent = False

subsystem = Subsystem().loop()

Producer part

producer = Producer(identity="karton.named-producer").send_task(...)

The bad news (for porting):

• Resource classes are completely reworked.

– Resources are strictly divided to local (uploadable) and remote (downloadable) ones. The inheritance struc-
ture is different than in 2.x, so check the API first.

– There is no sha256 field, but metadata dictionary instead. For compatibility reasons: we expose sha256
from Karton 2.x as metadata["sha256"] and back. New subsystems should not rely on that behavior.

– flags are also not exposed.

– Removed is_directory method.

If you need to check whether your resource is directory, use isinstance(resource,
DirectoryResourceBase) instead.

– Remote resources are now lazy-objects bound with MinIO, so we can directly get the contents instead of
using proxy methods.

Code from 2.x:

sample = self.current_task.get_resource("sample")
Calling Consumer method to get local version of resource
local_sample = self.download_resource(sample)
Get the contents
sample_content = local_sample.content

1.3. What is changed in Karton 3.0.0 5

karton Documentation, Release 5.0.1

must be ported to:

sample = self.current_task.get_resource("sample")
Contents will be lazy-loaded
If you want to download them directly: use sample.download()
sample_content = sample.content

All related Consumermethods like download_resource() or download_to_temporary_folder() are
completely removed. These methods were incomplete and inconsistent, especially for directories. Now, the
whole power behind the Resource features is available directly via object methods.

– Removed PayloadBag wrappers with resource iterator methods. They provided additional level of com-
plexity without adding new capabilities. There are classic dictionaries in place of them.

• Task classes also changed a bit

– payload_contains() is renamed to has_payload() and doesn’t check only non-persistent payload ex-
istence, but includes persistent payloads as well.

– persistent_payload_contains() is renamed to is_payload_persistent()

– get_resource() is not just get_payload() alias and provides type checking. It does not accept the
default argument.

– Instead of get_resources(), get_directory_resources() and get_file_resources() - use
iterate_resources() and do type checking yourself.

• Removed ‘kpm’ (some kind of helper scripts will be provided in future versions, that one was outdated anyway)

6 Chapter 1. Breaking changes

CHAPTER

TWO

GETTING STARTED

2.1 Installation

You can get the Karton framework from pip:

python -m pip install karton-core

Or, if you’re feeling adventurous, download the sources using git and install them manually.

In addition to Karton core library, you’ll also need to setup S3-compatible storage like MinIO and Redis server.

2.2 Configuration

Each Karton subsystem needs a karton.ini file that contains the connection parameters for Redis and S3.

You can also use this file to store custom fields and use them e.g. by Extending configuration.

By default, the config class will look for the config file in several places, but let’s start by placing one in the root of our
new Karton subsystem.

[s3]
secret_key = minioadmin
access_key = minioadmin
address = http://localhost:9000
bucket = karton

[redis]
host=localhost
port=6379

If everything was configured correctly, you should now be able to run the karton-system broker and get "Manager
karton.system started" signaling that it was able to connect to Redis and S3 correctly.

7

https://docs.min.io/docs/minio-quickstart-guide.html
https://redis.io/topics/quickstart

karton Documentation, Release 5.0.1

2.3 Docker Compose development setup

Check out repository called Karton playground that provides similar setup coupled with MWDB Core and few open-
source Karton services.

If you’re just trying Karton out or you want a mimimal, quick & easy development environment setup, check out the
dev folder in the Karton root directory.

It contains a small docker-compose setup that will setup the minimal development environment for you.

All you have to do is run

docker-compose up --build

And then connect additional Karton systems using the karton.ini.dev config file.

karton-classifier --config-file dev/karton.ini.dev

2.4 Writing your first Producer and Consumer

Since all great examples start with foobar, that’s exactly what we’re going to do. Let’s start by writing a producer that
spawns new tasks.

from karton.core import Producer, Task

if __name__ == "__main__":
foo_producer = Producer(identity="foobar-producer")
for i in range(5):

task = Task(headers={"type": "foobar"}, payload={"data": i})
foo_producer.send_task(task)

That was pretty short! Now for a bit longer consumer:

from karton.core import Consumer, Task

class FooBarConsumer(Consumer):
identity = "foobar-consumer"
filters = [

{
"type": "foobar"

}
]
def process(self, task: Task) -> None:

num = task.get_payload("data")
print(num)
if num % 3 == 0:

print("Foo")
if num % 5 == 0:

print("Bar")

if __name__ == "__main__":
FooBarConsumer.main()

If we now run the consumer and spawn a few “foobar” tasks we should get a few foobars logs in return:

8 Chapter 2. Getting started

karton Documentation, Release 5.0.1

[INFO] Service foo-consumer started
[INFO] Service binds created.
[INFO] Binding on: {'type': 'foobar'}
[INFO] Received new task - 884880e0-e5fc-4a71-a93a-08f0caa92889
0
Foo
Bar
[INFO] Task done - 884880e0-e5fc-4a71-a93a-08f0caa92889
[INFO] Received new task - 60be2eb5-9e7e-4928-8823-a0d30bbe68ec
1
[INFO] Task done - 60be2eb5-9e7e-4928-8823-a0d30bbe68ec
[INFO] Received new task - 301d8a50-f21e-4e33-b30e-0f3b1cdbda03
2
[INFO] Task done - 301d8a50-f21e-4e33-b30e-0f3b1cdbda03
[INFO] Received new task - 3bb9aea2-4027-440a-8c21-57b6f476233a
3
Foo
[INFO] Task done - 3bb9aea2-4027-440a-8c21-57b6f476233a
[INFO] Received new task - 050cdace-05b0-4648-a070-bc4a7a8de702
4
[INFO] Task done - 050cdace-05b0-4648-a070-bc4a7a8de702
[INFO] Received new task - d3a39940-d64c-4033-a7da-80eae9786631
5
Bar
[INFO] Task done - d3a39940-d64c-4033-a7da-80eae9786631

Check Karton service examples for more details.

2.5 Command-line interface (CLI)

When you install karton-core, a new command called karton is added to your terminal. You can inspect its capa-
bilities by running it:

(venv) user@computer ~/> karton
usage: karton [-h] [--version] [-c CONFIG_FILE] [-v] {list,logs,delete,configure} ...

Your red pill to the karton-verse

positional arguments:
{list,logs,delete,configure}

sub-command help
list List active karton binds
logs Start streaming logs
delete Delete an unused karton bind
configure Create a new configuration file

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-c CONFIG_FILE, --config-file CONFIG_FILE

Alternative configuration path
(continues on next page)

2.5. Command-line interface (CLI) 9

karton Documentation, Release 5.0.1

(continued from previous page)

-v, --verbose More verbose log output

The commands are small, utility scripts that are supposed to make maintaining karton a bit easier.

list

List active karton consumers, this can be handy if you don’t have a dashboard deployed

logs [–filter FILTER]

Subscribe to logs coming in from all services. This is very useful if you’re trying to hunt down errors or some funky
behavior. You can specify a filter that will limit incoming log messages, for example, to a specific identity - --filter
"karton.classifier".

delete <identity>

Delete a persistent queue that’s no longer needed.

configure [–force]

Create a new karton.ini configuration file. The config wizard will ask you about various parameters, like the S3
credentials, Redis host, etc. and then save the information into a config file.

10 Chapter 2. Getting started

CHAPTER

THREE

KARTON SERVICE EXAMPLES

Here are few examples of common Karton system patterns.

3.1 Producer services

import sys
from karton.core import Config, Producer, Task, Resource

config = Config("karton.ini")
producer = Producer(config)

filename = sys.argv[1]
with open(filename, "rb") as f:

contents = f.read()

resource = Resource(os.path.basename(filename), contents)

task = Task({"type": "sample", "kind": "raw"})

task.add_resource("sample", resource)
task.add_payload("tags", ["simple_producer"])
task.add_payload("additional_info", ["This sample has been added by simple producer␣
→˓example"])

logging.info('pushing file to karton %s, task %s' % (name, task))
producer.send_task(task)

3.2 Consumer services

Consumer has to define identity, a name used for identification and binding in RMQ and filters - a list of dicts
determining what types of tasks the service wants to process.

Elements in the list are OR’ed and items inside dicts are AND’ed.

import sys
from karton.core import Config, Consumer, Task, Resource

class Reporter(Consumer):
(continues on next page)

11

karton Documentation, Release 5.0.1

(continued from previous page)

identity = "karton.reporter"
filters = [

{
"type": "sample",
"stage": "recognized"

},
{

"type": "sample",
"stage": "analyzed"

},
{

"type": "config"
}

]

Above example accepts headers like:

{
"type": "sample",
"stage": "recognized",
"kind": "runnable",
"platform": "win32",
"extension": "jar"

}

or

{
"type": "config",
"kind": "cuckoo1"

}

but not

{
"type": "sample",
"stage": "something"

}

Next step is to define process method, this is handler for incoming tasks that match our filters.

def process(self, task: Task) -> None:
if task.headers["type"] == "sample":

return self.process_sample(task)
else:

return self.process_config(task)

def process_sample(self, task: Task) -> None:
sample = task.get_resource("sample")
...

def process_config(self, task: Task) -> None:
(continues on next page)

12 Chapter 3. Karton service examples

karton Documentation, Release 5.0.1

(continued from previous page)

config = task.get_payload("config")
...

task.headers gives you information on why task was routed and methods like get_resource or get_payload allow
you to get resources or metadata from task.

Finally, we need to run our module, we get this done with loop method, which blocks on listening for new tasks, running
process when needed.

if __name__ == "__main__":
c = Reporter()
c.loop()

3.3 Karton services (Producer + Consumer)

Karton class is simply Producer and Consumer bundled together.

As defined in karton/core/karton.py:

class Karton(Consumer, Producer):
"""
This glues together Consumer and Producer - which is the most common use case
"""

Receiving data is done exactly like in Consumer. Using producer is no different as well, just use self.send_task.

Full-blown example below.

from karton.core import Karton, Task

class SomeNameKarton(Karton):
Define identity and filters as you would in the Consumer class
identity = "karton.somename"
filters = [

{
"type": "config",

},
{

"type": "analysis",
"kind": "cuckoo1"

},
]

Method called by Karton library
def process(self, task: Task) -> None:

Getting resources we need without downloading them locally
analysis_resource = task.get_resource('analysis')
config_resource = task.get_resource('config')

Log with self.log
self.log.info("Got resources, lets analyze them!")
...

(continues on next page)

3.3. Karton services (Producer + Consumer) 13

karton Documentation, Release 5.0.1

(continued from previous page)

Send our results for further processing or reporting
Producer part
t = Task({"type": "sample"})
t.add_resource("sample", Resource(filename, content))
self.send_task(task)

3.4 Log consumer

By default, all logs created in Karton systems are published to a specialized log consumer using the Redis PUBSUB
pattern.

This is a very simple example of a system that implements the LogConsumer interface and prints logs to stderr.

import sys
from karton.core.karton import LogConsumer

class StdoutLogger(LogConsumer):
identity = "karton.stdout-logger"

def process_log(self, event: dict) -> None:
there are "log" and "operation" events
if event.get("type") == "log":

print(f"{event['name']}: {event['message']}", file=sys.stderr, flush=True)

if __name__ == "__main__":
StdoutLogger().loop()

14 Chapter 3. Karton service examples

CHAPTER

FOUR

HEADERS, PAYLOADS AND RESOURCES

Task consists of two elements: headers and payload.

4.1 Task headers

Headers specify the purpose of a task and determine how task will be routed by karton-system. They’re defined by flat
collection of keys and values.

Example:

task = Task(
headers = {

"type": "sample",
"kind": "runnable",
"platform": "win32",
"extension": "dll"

}
)

Consumers listen for specific set of headers, which is defined by filters.

class GenericUnpacker(Karton):
"""
Performs sample unpacking
"""
identity = "karton.generic-unpacker"
filters = [

{
"type": "sample",
"kind": "runnable"

},
{

"type": "sample",
"kind": "script",
"platform": "win32"

}
]

def process(self, task: Task) -> None:
Get incoming task headers

(continues on next page)

15

karton Documentation, Release 5.0.1

(continued from previous page)

headers = task.headers
self.log.info("Got %s sample from %s", headers["kind"], headers["origin"])

If Karton-System finds that a task matches any of subsets defined by consumer queue filters then the task will be routed
to that queue.

Following the convention proposed in examples above, it means that GenericUnpacker will get all tasks contain
samples directly runnable in sandboxes (regardless of target platform) or Windows 32-bit only scripts.

Headers can be used to process our input differently, depending on the kind of sample:

class GenericUnpacker(Karton):
...

def process(self, task: Task) -> None:
Get incoming task headers
headers = task.headers
if headers["kind"] == "runnable":

self.process_runnable()
elif headers["kind"] == "script":

self.process_script()

Few headers have special meaning and are added automatically by Karton to incoming/outgoing tasks.

• {"origin": "<identity>"} specifies the identity of task sender. It can be used for listening for tasks in-
coming only from predefined identity.

• {"receiver": "<identity>"} is added by Karton when task is routed to the consumer queue. On the
receiver side, value is always equal to self.identity

4.2 Filter patterns

New in version 5.0.0.

Filter matching follows two simple rules. If we want task to be routed to the consumer:

• task headers must match any of consumer filters

• task headers match consumer filter if they match all values defined in filter

Starting from 5.0.0, consumer filters support basic wildcards and exclusions.

Pattern Meaning
{"foo": "bar"} matches ‘bar’ value of ‘foo’ header
{"foo": "!bar"} matches any value other than ‘bar’ in ‘foo’ header
{"foo": "ba?"} matches ‘ba’ value followed by any character
{"foo": "ba*"} matches ‘ba’ value followed by any substring (including empty)
{"foo": "ba[rz]"} matches ‘ba’ value followed by ‘r’ or ‘z’ character
{"foo": "ba[!rz]"} matches ‘ba’ value followed by any character other than ‘r’ or ‘z’
{"foo": "!ba[!rz]"} matches any value of ‘foo’ header that doesn’t match to the “bar[!rz]” pattern

Filter logic can be used to fulfill specific use-cases:

16 Chapter 4. Headers, payloads and resources

karton Documentation, Release 5.0.1

filters value Meaning
[] matches no tasks (no headers allowed). Can be used to turn off queue and

consume tasks left.
[{}] matches any task (no header conditions). Can be used to intercept all tasks

incoming to Karton.
[{"foo": "bar"}, {"foo":
"baz"}]

‘foo’ header is required and must have ‘bar’ or ‘baz’ value.

[{"foo": "!*"}] ‘foo’ header must be not defined.

Warning: It’s recommended to use only strings in filter and header values

Although some of non-string types are allowed, they will be converted to string for comparison which may lead to
unexpected results.

4.3 Task payload

Payload is also a dictionary, but it’s not required to be a flat structure like headers are. Its contents do not affect the
routing so task semantics must be defined by headers.

task = Task(
headers = ...,
payload = {

"entrypoints": [
"_ExampleFunction@12"

],
"matched_rules": {

...
},
"sample": Resource("original_name.dll", path="uploads/original_name.dll")

}
)

Payload can be accessed by Consumer using Task.get_payload() method.

class KartonService(Karton):
...
def process(self, task: Task) -> None:

entrypoints = task.get_payload("entrypoints", default=[])

But payload dictionary itself still must be lightweight and JSON-encodable, because it’s stored in Redis along with
the whole task definition.

If task operates on binary blob or complex structure, which is probably the most common use-case, payload can still
be used to store the reference to that object. The only requirement is that object must be placed in separate, shared
storage, available for both Producer and Consumer. That’s exactly how Resource objects work.

4.3. Task payload 17

karton Documentation, Release 5.0.1

4.4 Resource objects

Resources are part of a payload that represent a reference to the file or other binary large object. All objects of that
kind are stored in S3-compatible storage, which is used as shared object storage between Karton subsystems.

task = Task(
headers = ...,
payload = {

"sample": Resource("original_name.dll", path="uploads/original_name.dll")
}

)

Resource objects created by producer (LocalResource) are uploaded to S3 and transformed to RemoteResource
objects. RemoteResource is lazy object that allows to download the object contents via RemoteResource.content
property.

class GenericUnpacker(Karton):
...

def unpack(self, packed_content: bytes) -> bytes:
...

def process(self, task: Task) -> None:
Get sample resource
sample = task.get_resource("sample")
Do the job
unpacked = self.unpack(sample.content)
Publish the results
task = Task(

headers={
"type": "sample",
"kind": "unpacked"

},
payload={

"sample": Resource("unpacked", content=unpacked)
}

)
self.send_task(task)

If expected resource is too big for in-memory processing or we want to launch external tools that need the file system
path, resource contents can be downloaded using RemoteResource.download_to_file() or RemoteResource.
download_temporary_file().

class KartonService(Karton):
...
def process(self, task: Task) -> None:

archive = task.get_resource("archive")
with archive.download_temporary_file() as f:

f is file-like named object
archive_path = f.name

If you want to pass original sample along with new task, you can just put a reference back into its payload.

18 Chapter 4. Headers, payloads and resources

karton Documentation, Release 5.0.1

task = Task(
headers={

"type": "sample",
"kind": "unpacked"

},
payload={

"sample": Resource("unpacked", content=unpacked),
"parent": sample # Reference to original (packed) sample

}
)
self.send_task(task)

Each resource has its own metadata store where we can provide additional information about file e.g. SHA-256 check-
sum

sample = Resource("sample.exe",
content=sample_content,
metadata={
"sha256": hashlib.sha256(sample_content).hexdigest()

})

Starting from v5.0.0, resources can be nested in other objects like lists or dictionaries.

task = Task(
headers={

"type": "analysis",
"kind": "artifacts"

},
payload={

"artifacts": [
Resource("file1", content=file1),
Resource("file2", content=file2),
Resource("file3", content=file3)

]
"parent": sample # Reference to original (packed) sample

}
)
self.send_task(task)

More information about resources can be found in API documentation.

4.5 Directory resource objects

Resource objects work well for single files, but sometimes we need to deal with bunch of artifacts e.g. process memory
dumps from dynamic analysis. Very common way to do that is to pack them into Zip archive using Python zipfile
module facilities.

Karton library includes a helper method for that kind of archives, called LocalResource.from_directory().

task = Task(
headers={

"type": "analysis"
(continues on next page)

4.5. Directory resource objects 19

https://docs.python.org/3/library/zipfile.html
https://docs.python.org/3/library/zipfile.html

karton Documentation, Release 5.0.1

(continued from previous page)

},
payload={

"dumps": LocalResource.from_directory(analysis_id,
directory_path=f"analyses/{analysis_id}/

→˓dumps"),
}

)
self.send_task(task)

Files contained in directory_path are stored under relative paths to the provided directory path. Default compression
level is zipfile.ZIP_DEFLATED instead of zipfile.ZIP_STORED.

Directory resources are deserialized to the usual RemoteResource objects but in contrary to the usual resources they
can for example be extracted to directories using RemoteResource.extract_temporary()

class KartonService(Karton):
...
def process(self, task: Task) -> None:

dumps = task.get_resource("dumps")
with dumps.extract_temporary() as dumps_path:

...

If we don’t want to extract all files, we can work directly with zipfile.ZipFile object, which will be internally
downloaded from S3 to the temporary file using RemoteResource.download_temporary_file() method.

class KartonService(Karton):
...
def process(self, task: Task) -> None:

dumps = task.get_resource("dumps")

with dumps.zip_file() as zipf:
with zipf.open("sample_info.txt") as info:

...

More information about resources can be found in API documentation.

4.6 Persistent payload

Part of payload that is propagated to the whole task subtree. The common use-case is to keep information related not
with single artifact but the whole analysis, so they’re available everywhere even if not explicitly passed by the Karton
Service.

task = Task(
headers=...,
payload=...,
payload_persistent={

"uploader": "psrok1"
}

)

Incoming persistent payload (task received by Karton Service) is merged by Karton library with the outgoing tasks
(result tasks sent by Karton Service). Karton service can’t overwrite or delete the incoming payload keys.

20 Chapter 4. Headers, payloads and resources

karton Documentation, Release 5.0.1

class KartonService(Karton):
...
def process(self, task: Task) -> None:

uploader = task.get_payload("uploader")

assert task.is_payload_persistent("uploader")

task = Task(
headers=...,
payload=...

)
Outgoing task also contains "uploader" key
self.send_task(task)

Regular payloads and persistent payload keys have common namespace so persistent payload can’t be overwritten by
regular payload as well e.g.

task = Task(
headers=...,
payload={

"common_key": "<this will be ignored>"
},
payload_persistent={

"common_key": "<and this value will be used>"
}

)

Warning: Because merging strategy is quite aggressive, it’s not recommended to overuse that feature. They should
be treated as “analysis-wide payload”. It’s recommended to set them only in initial task.

Don’t store any references to resources or other heavy objects here, unless you need to. Persistent payload is, as the
name says, persistent, so it is propagated to the whole task subtree and can’t be removed during analysis. Resource
referenced by persistent payload won’t be garbage-collected until the whole analysis (task subtree) ends, even if it’s
not needed by further analysis steps.

4.6. Persistent payload 21

karton Documentation, Release 5.0.1

22 Chapter 4. Headers, payloads and resources

CHAPTER

FIVE

CONFIGURATION AND CUSTOMIZATION

This chapter describes how to configure and customize Karton services, including ready-made ones available on
PyPi/Github.

5.1 Basic configuration

Karton services can be configured using various ways. Let’s take a look at basic configuration.

[s3]
secret_key = minioadmin
access_key = minioadmin
address = http://localhost:9000
bucket = karton

[redis]
host=localhost
port=6379

Configuration values are read from various sources using the following precedence:

• /etc/karton/karton.ini file (global)

• ~/.config/karton/karton.ini file (user local)

• ./karton.ini file (subsystem local)

• --config-path <path> optional, additional path provided in arguments

• KARTON_SECTION_OPTION values from environment variables e.g. (secret_key option in [s3] section can be
overridden using KARTON_S3_SECRET_KEY variable)

• Command-line arguments (if Karton.main() method is used as entrypoint)

You can build your configuration hierarchically e.g. by providing common settings in /etc/karton/karton.ini,
service-specific settings in local ./karton.ini and secrets in env vars.

Common Karton configuration fields are listed below:

23

karton Documentation, Release 5.0.1

Sec-
tion

Option Description

[s3] address S3 API address
[s3] ac-

cess_key
S3 API access key (username)

[s3] se-
cret_key

S3 API secret key (password)

[s3] bucket Default bucket name for storing produced resources
[redis] host Redis server hostname
[redis] port Redis server port
[redis] db Redis server database id (default: 0)
[redis] username Redis server AUTH username (default: None)
[redis] password Redis server AUTH password (default: None)
[redis] socket_timeoutSocket timeout for Redis operations in seconds (default: 30, use 0 to turn off if timeout

doesn’t work properly)
[kar-
ton]

identity Karton service identity override (overrides the name provided in class / constructor argu-
ments)

[kar-
ton]

persistent Karton service queue persistency override

[kar-
ton]

task_timeoutKarton service task execution timeout in seconds. Useful if your service sometimes hangs.
Karton will schedule SIGALRM if this value is set.

[log-
ging]

level Logging level for Karton service logger (default: INFO)

[sig-
nal-
ing]

status Turns on producing of ‘karton.signaling.status’ tasks, signalling the task start and finish
events by Karton service (default: 0, off)

5.2 Karton System configuration

Most core services can be tuned depending on your needs. Custom service configuration is handled the same way as
general Karton configuration.

Good example is Karton System:

Sec-
tion

Option Description

[sys-
tem]

gc_interval Spawn interval for garbage collection tasks in seconds. Default is 3 minutes.

[sys-
tem]

task_dispatched_timeoutTimeout for tasks that are stuck in DISPATCHED state (e.g. Producer crashed during
upload of resources). Default is 24 hours.

[sys-
tem]

task_started_timeoutTimeout for tasks that are stuck in STARTED state (e.g. non-graceful crash of Consumer
during task processing). Default is 24 hours.

[sys-
tem]

task_crashed_timeoutTimeout for removal of crashed tasks. Default is 3 days.

[sys-
tem]

enable_gc Enable garbage collection. GC can be turned off if you want to scale up routing using
several Karton System instances.

[sys-
tem]

enable_router Enable task routing. Routing can be turned off if you want to use dedicated Karton
System instance for GC.

All settings can be set using command-line.

24 Chapter 5. Configuration and customization

karton Documentation, Release 5.0.1

$ karton-system --help
usage: karton-system [-h] [--version] [--config-file CONFIG_FILE] [--identity IDENTITY]␣
→˓[--log-level LOG_LEVEL] [--setup-bucket] [--disable-gc] [--disable-router] [--gc-
→˓interval GC_INTERVAL]

[--task-dispatched-timeout TASK_DISPATCHED_TIMEOUT] [--task-started-
→˓timeout TASK_STARTED_TIMEOUT] [--task-crashed-timeout TASK_CRASHED_TIMEOUT]

Karton message broker.

options:
-h, --help show this help message and exit
--version show program's version number and exit
--config-file CONFIG_FILE

Alternative configuration path
--identity IDENTITY Alternative identity for Karton service
--log-level LOG_LEVEL

Logging level of Karton logger
--setup-bucket Create missing bucket in S3 storage
--disable-gc Do not run GC in this instance
--disable-router Do not run task routing in this instance
--gc-interval GC_INTERVAL

Garbage collection interval
--task-dispatched-timeout TASK_DISPATCHED_TIMEOUT

Timeout for non-enqueued tasks stuck in Dispatched state (non-
→˓graceful shutdown of producer)
--task-started-timeout TASK_STARTED_TIMEOUT

Timeout for non-enqueued tasks stuck in Started state (non-
→˓graceful shutdown of consumer)
--task-crashed-timeout TASK_CRASHED_TIMEOUT

Timeout for tasks in Crashed state

5.3 Extending configuration

During development of your own Karton services you may want to provide your own configuration fields.

All configuration values set in karton.ini files and KARTON_ envs are available in self.config object and don’t
require additional definition.

The only thing that needs to be extended is argument parser if you want to use command-line arguments. Fortunately,
Karton classes expose dedicated methods for this purpose.

import argparse

from karton import Config, Karton, Task

class SmolKarton(Karton):
identity = "karton.smol"
filters = [{

"type": "smol-tasks"
}]

def process(self, task: Task) -> None:
(continues on next page)

5.3. Extending configuration 25

karton Documentation, Release 5.0.1

(continued from previous page)

if self.config.has_option("smol", "how_smol")
how_smol = self.config.getint("smol", "how_smol")
if task.headers["size"] > how_smol:
Task is not smol enough UwU
return

...

@classmethod
def args_parser(cls) -> argparse.ArgumentParser:

Remember to call super method to include base arguments
parser = super().args_parser()
parser.add_argument(

"--how-smol",
type=int,
default=cls.GC_INTERVAL,
help="Sets size limit for tasks",

)
return parser

@classmethod
def config_from_args(cls, config: Config, args: argparse.Namespace) -> None:

Remember to call super method to include base arguments
super().config_from_args(config, args)
config.load_from_dict(

{
"smol": {

"how_smol": args.how_smol,
}

}
)

if __name__ == "__main__":
SmolKarton.main()

args_parser method exposes the argparse.ArgumentParser that is used for handling CLI arguments. Values
from argparse are then passed to config_from_args that maps arguments into sections and options of configuration.
That mechanism allows you to define your own arguments and include these values in the final configuration.

5.4 Customizing ready-made Karton services

Ready-made Karton services like karton-mwdb-reporter are coming with a predefined set of filters and emitted
headers. If you want to extend them or override them without forking the whole project, you can simply extend the
Karton class and override things you need.

from karton.mwdb_reporter import MWDBReporter

class CustomMWDBReporter(MWDBReporter):
filters = [

*CustomMWDBReporter,
{"type": "sample", "stage", "my-stage"}

(continues on next page)

26 Chapter 5. Configuration and customization

karton Documentation, Release 5.0.1

(continued from previous page)

]

if __name__ == "__main__":
CustomMWDBReporter.main()

Warning: It’s recommended to pin to the specific version of service you derive from in case of conflicting changes.

5.4. Customizing ready-made Karton services 27

karton Documentation, Release 5.0.1

28 Chapter 5. Configuration and customization

CHAPTER

SIX

ADVANCED CONCEPTS

6.1 Routed and unrouted tasks (task forking)

During its lifetime, the task will transfer between various states and its reference will be passed through several queues,
a simple way to understand it is to see how the tasks state changes in various moments:

Each new task is registered in the system by a call to karton.Producer.send_task() and starts its life in the un-
routed task queue with a TaskState.Declared state.

All actual task data is stored in the Karton.task namespace and all other (routed and unrouted) queues will be always
only holding a reference to a record from this place.

The main broker - karton.System constantly looks over the unrouted (karton.tasks) queue and keeps the tasks
running as well as clears up leftover unneeded data.

Because task headers can be accepted by more than one consumer the task has to be forked before it goes to the
appropriate consumer (routed) queues. Based on unrouted task, Karton.System generates as many routed tasks
as there are matching queues. These tasks are separate, independent instances, so they have different uid than original
unrouted task.

Note: While uid of routed and unrouted tasks are different, parent_uid stays the same. parent_uid always identifies
the routed task.

Reference to the unrouted task is called orig_uid.

Each registered consumer monitors its (routed) queue and performs analysis on all tasks that appear there. As soon
as the consumer starts working on a given task, it sends a signal to the broker to mark the tasks state as TaskState.
Started.

If everything goes smoothly, the consumer finishes the tasks and sends a similar signal, this time marking the task
as TaskState.Finished. If there is a problem and an exception is thrown within the self.process function,
TaskState.Crashed is used instead.

As a part of its housekeeping, Karton.System removes all TaskState.Finished tasks immediately and
TaskState.Crashed tasks after a certain grace period to allow for inspection and optional retry.

29

karton Documentation, Release 5.0.1

6.2 Task tree (analysis) and task life cycle

Every analysis starts from initial task spawned by karton.Producer. Initial task is consumed by consumers, which
then produce next tasks for further processing. These various tasks originating from initial task can be grouped together
into a task tree, representing the analysis.

Each task is identified by a tuple of four identifiers:

• uid - unique task identifier

• parent_uid - identifier of task that spawned current task as a result of processing

• root_uid - task tree identifier (analysis identifier, derived from uid of initial unrouted task)

• orig_uid - identifier of the original task that was forked to create this task (unrouted task or retried crashed task)

In order to better understand how those identifiers are inherited and passed between tasks take a look at the following
example:

6.3 Handling logging

By default, all systems inheriting from karton.core.KartonBase() will have a custom logging.Logger() in-
stance exposed as log(). It publishes all logged messages to a special PUBSUB key on the central Redis database.

In order to store the logs into a persistent storage like Splunk or Rsyslog you have to implement a service that will
consume the log entries and send them to the final database, for an example of such service see Log consumer.

The logging level can be configured using the standard karton config and setting level in the logging section to
appropriate level like "DEBUG", "INFO" or "ERROR".

6.4 Consumer queue persistence

Consumer queue is created on the first registration of consumer and it gets new tasks even if all consumer instances
are offline. It guarantees that analysis will complete even after short downtime of part of subsystems. Unfortunately, it
also blocks completion of the analysis when we connect a Karton Service which is currently developed or temporary.

We can turn off queue persistence using the persistent = False attribute in the Karton subsystem class.

class TemporaryConsumer(Karton):
identity = "karton.temporary-consumer"
filters = ...
persistent = False

def process(self, task: Task) -> None:
...

This is also the (hacky) way to remove persistent queue from the system. Just launch empty consumer with identity
you want to remove, wait until all tasks will be consumed and shut down the consumer.

30 Chapter 6. Advanced concepts

karton Documentation, Release 5.0.1

from karton.core import Karton

class DeleteThisConsumer(Karton):
identity = "karton.identity-to-be-removed"
filters = {}
persistent = False

def process(self, task: Task) -> None:
pass

DeleteThisConsumer().loop()

6.5 Prioritized tasks

Karton allows to set priority for task tree: TaskPriority.HIGH, TaskPriority.NORMAL (default) or
TaskPriority.LOW. Priority is determined by producer spawning an initial task.

producer = Producer()
task = Task(

headers=...,
priority=TaskPriority.HIGH

)
producer.send_task(task)

All tasks within the same task tree have the same priority, which is derived from the priority of initial task. If consumer
will try to set different priority for spawned tasks, new priority settings will be simply ignored.

6.6 Extending configuration

During processing we may need to fetch data from external service or use libraries that need to be pre-configured. The
simplest approach is to use separate configuration file, but this is a bit messy.

Karton configuration is represented by special object karton.Config, which can be explicitly provided as an argument
to the Karton constructor. Config is based on configparser.ConfigParser, so we can extend it with additional
sections for custom configuration.

For example, if we need to communicate with MWDB, we can make MWDB binding available via self.config.mwdb

import mwdblib

class MWDBConfig(Config):
def __init__(self, path=None) -> None:

super().__init__(path)
self.mwdb_config = dict(self.config.items("mwdb"))

def mwdb(self) -> mwdblib.MWDB:
api_key=self.mwdb_config.get("api_key")
api_url=self.mwdb_config.get("api_url", mwdblib.api.API_URL)

mwdb = mwdblib.MWDB(api_key=api_key, api_url=api_url)
(continues on next page)

6.5. Prioritized tasks 31

karton Documentation, Release 5.0.1

(continued from previous page)

if not api_key:
mwdb.login(

self.mwdb_config["username"],
self.mwdb_config["password"])

return mwdb

class GenericUnpacker(Karton):
...

def process(self, task: Task) -> None:
file_hash = task.get_payload("file_hash")
sample = self.config.mwdb().query_file(file_hash)

if __name__ == "__main__":
GenericUnpacker(MWDBConfig()).loop()

and provide additional section in karton.ini file:

[s3]
secret_key = <redacted>
access_key = <redacted>
address = http://127.0.0.1:9000
bucket = karton

[redis]
host = 127.0.0.1
port = 6379

[mwdb]
api_url = http://127.0.0.1:5000/api
api_key = <redacted>

6.6.1 Karton-wide and instance-wide configuration

By default the configuration is searched in the following locations (by searching order):

• /etc/karton/karton.ini

• ~/.config/karton/karton.ini

• ./karton.ini

• environment variables

Each next level overrides and merges with the values loaded from the previous path. It means that we can provide
karton-wide configuration and specialized instance-wide extended configuration specific for subsystem.

Contents of /etc/karton/karton.ini:

[s3]
secret_key = <redacted>
access_key = <redacted>
address = http://127.0.0.1:9000
bucket = karton

(continues on next page)

32 Chapter 6. Advanced concepts

karton Documentation, Release 5.0.1

(continued from previous page)

[redis]
host = 127.0.0.1
port = 6379

and specialized configuration in the working directory ./karton.ini

[mwdb]
api_url = http://127.0.0.1:5000/api
api_key = <redacted>

6.7 Passing tasks to the external queue

Karton can be used to delegate tasks to separate queues e.g. external sandbox. External sandboxes usually have their
own concurrency and queueing mechanisms, so Karton subsystem needs to:

• dispatch task to the external service

• wait until service ends processing

• fetch results and spawn result tasks keeping the root_uid and parent_uid

We tried to solve this using asynchronous tasks but it turned out to be very hard to be implemented correctly and didn’t
really fit in to with the Karton model.

6.7.1 Busy waiting

The simplest way to do that is to perform all of these actions synchronously, inside the process() method.

def process(self, task: Task) -> None:
sample = task.get_resource("sample")

Dispatch task, getting the analysis_id
with sample.download_temporary_file() as f:

analysis_id = sandbox.push_file(f)

Wait until analysis finish
while sandbox.is_finished(analysis_id):

Check every 5 seconds
time.sleep(5)

If analysis has been finished: get the results and process them
analysis = sandbox.get_results(analysis_id)
self.process_results(analysis)

6.7. Passing tasks to the external queue 33

karton Documentation, Release 5.0.1

34 Chapter 6. Advanced concepts

CHAPTER

SEVEN

WRITING UNIT TESTS

7.1 Basic unit test

So you want to test your karton systems, that’s great! The karton core actually comes with a few helper methods to
make it a bit easier.

The building block of all karton tests is karton.core.test.KartonTestCase(). It’s a nifty class that wraps around
your karton system and allows you to run tasks on it without needing to create a producer. What’s more important
however, is that it runs without any Redis or S3 interaction and thus creates no side effects.

from .math_karton import MathKarton
from karton.core import Task
from karton.core.test import KartonTestCase

class MathKartonTestCase(KartonTestCase):
"""Test a karton that accepts an array of integers in "numbers" payload and
returns their sum in "result".
"""
karton_class = MathKarton

def test_addition(self) -> None:
prepare a fake test task that matches the production format
task = Task({

"type": "math-task",
}, payload={

"numbers": [1, 2, 3, 4],
})

dry-run the fake task on the wrapped karton system
results = self.run_task(task)

prepare a expected output task and check if it matches the one produced
expected_task = Task({

"origin": "karton.math",
"type": "math-result"

}, payload={
"result": 10,

})

self.assertTasksEqual(results, [expected_task])

35

karton Documentation, Release 5.0.1

7.2 Testing resources

That was pretty simple, but what about testing karton systems that accept and spawn payloads containing resources?

karton.core.test.KartonTestCase() already takes care of them for you. Just use normal karton.core.
Resource() like you would normally do.

from .reverser_karton import ReverserKarton
from karton.core import Task, Resource
from karton.core.test import KartonTestCase

class ReverserKartonTestCase(KartonTestCase):
"""
Test a karton that expects a KartonResource in "file" key and spawns a new
task containing that file reversed.
"""

karton_class = ReverserKarton

def test_reverse(self) -> None:
prepare input data
input_data = b"foobarbaz"
create fake, mini-independent resources
input_sample = Resource("sample.txt", input_data)
output_sample = Resource("sample.txt", input_data[::-1])

prepare a fake test task that matches the production format
task = Task({

"type": "reverse-task",
}, payload={

"file": input_sample
})

dry-run the fake task on the wrapped karton system
results = self.run_task(task)

prepare a expected output task and check if it matches the one produced
expected_task = Task({

"origin": "karton.reverser",
"type": "reverse-result"

}, payload={
"file": output_sample,

})

self.assertTasksEqual(results, [expected_task])

36 Chapter 7. Writing unit tests

CHAPTER

EIGHT

KARTON API REFERENCE

8.1 karton.core.Producer, karton.core.Consumer

class karton.core.Producer(config: Optional[karton.core.config.Config] = None, identity: Optional[str] =
None, backend: Optional[karton.core.backend.KartonBackend] = None)

Producer part of Karton. Used for dispatching initial tasks into karton.

Parameters

• config (karton.Config) – Karton configuration object (optional)

• identity (str) – Producer name (optional)

Usage example:

from karton.core import Producer

producer = Producer(identity="karton.mwdb")
task = Task(

headers={
"type": "sample",
"kind": "raw"

},
payload={

"sample": Resource("sample.exe", b"put content here")
}

)
producer.send_task(task)

Parameters

• config – Karton config to use for service configuration

• identity – Karton producer identity

• backend – Karton backend to use

classmethod args_description()→ str
Return short description for argument parser.

classmethod args_parser()→ argparse.ArgumentParser
Return ArgumentParser for main() class method.

This method should be overridden and call super methods if you want to add more arguments.

37

karton Documentation, Release 5.0.1

classmethod config_from_args(config: karton.core.config.Config, args: argparse.Namespace)→ None
Updates configuration with settings from arguments

This method should be overridden and call super methods if you want to add more arguments.

classmethod karton_from_args(args: Optional[argparse.Namespace] = None)
Returns Karton instance configured using configuration files and provided arguments

Used by KartonServiceBase.main() method

property log: logging.Logger

Return Logger instance for Karton service

If you want to use it in code that is outside of the Consumer class, use logging.getLogger():

import logging
logging.getLogger("<identity>")

Returns Logging.Logger() instance

property log_handler: karton.core.logger.KartonLogHandler

Return KartonLogHandler bound to this Karton service.

Can be used to setup logging on your own by adding this handler to the chosen loggers.

send_task(task: karton.core.task.Task)→ bool
Sends a task to the unrouted task queue. Takes care of logging. Given task will be child of task we are
currently handling (if such exists).

Parameters task – Task object to be sent

Returns Bool indicating if the task was delivered

setup_logger(level: Optional[Union[str, int]] = None)→ None
Setup logger for Karton service (StreamHandler and karton.logs handler)

Called by Consumer.loop(). If you want to use logger for Producer, you need to call it yourself, but
remember to set the identity.

Parameters level – Logging level. Default is logging.INFO (unless different value is set in
Karton config)

class karton.core.Consumer(config: Optional[karton.core.config.Config] = None, identity: Optional[str] =
None, backend: Optional[karton.core.backend.KartonBackend] = None)

Base consumer class, this is the part of Karton responsible for processing incoming tasks

Parameters

• config – Karton config to use for service configuration

• identity – Karton service identity

• backend – Karton backend to use

add_post_hook(callback: Callable[[karton.core.task.Task, Optional[Exception]], None], name:
Optional[str] = None)→ None

Add a function to be called after processing each task.

Parameters

38 Chapter 8. Karton API reference

karton Documentation, Release 5.0.1

• callback – Function of the form callback(task, exception) where task is a
karton.Task and exception is an exception thrown by the karton.Consumer.
process() function or None.

• name – Name of the post-hook

add_pre_hook(callback: Callable[karton.core.task.Task, None], name: Optional[str] = None)→ None
Add a function to be called before processing each task.

Parameters

• callback – Function of the form callback(task) where task is a karton.Task

• name – Name of the pre-hook

classmethod args_description()→ str
Return short description for argument parser.

classmethod args_parser()→ argparse.ArgumentParser
Return ArgumentParser for main() class method.

This method should be overridden and call super methods if you want to add more arguments.

classmethod config_from_args(config: karton.core.config.Config, args: argparse.Namespace)→ None
Updates configuration with settings from arguments

This method should be overridden and call super methods if you want to add more arguments.

classmethod karton_from_args(args: Optional[argparse.Namespace] = None)
Returns Karton instance configured using configuration files and provided arguments

Used by KartonServiceBase.main() method

property log: logging.Logger

Return Logger instance for Karton service

If you want to use it in code that is outside of the Consumer class, use logging.getLogger():

import logging
logging.getLogger("<identity>")

Returns Logging.Logger() instance

property log_handler: karton.core.logger.KartonLogHandler

Return KartonLogHandler bound to this Karton service.

Can be used to setup logging on your own by adding this handler to the chosen loggers.

main()→ None
Main method invoked from CLI.

abstract process(task: karton.core.task.Task)→ None
Task processing method.

Parameters task – The incoming task object

self.current_task contains task that triggered invocation of karton.Consumer.process() but you should
only focus on the passed task object and shouldn’t interact with the field directly.

8.1. karton.core.Producer, karton.core.Consumer 39

karton Documentation, Release 5.0.1

setup_logger(level: Optional[Union[str, int]] = None)→ None
Setup logger for Karton service (StreamHandler and karton.logs handler)

Called by Consumer.loop(). If you want to use logger for Producer, you need to call it yourself, but
remember to set the identity.

Parameters level – Logging level. Default is logging.INFO (unless different value is set in
Karton config)

class karton.core.Karton(config: Optional[karton.core.config.Config] = None, identity: Optional[str] =
None, backend: Optional[karton.core.backend.KartonBackend] = None)

This glues together Consumer and Producer - which is the most common use case

8.2 karton.core.LogConsumer

class karton.core.LogConsumer(config: Optional[karton.core.config.Config] = None, identity: Optional[str]
= None, backend: Optional[karton.core.backend.KartonBackend] = None)

Base class for log consumer subsystems.

You can consume logs from specific logger by setting a logger_filter() class attribute.

You can also select logs of specific level via level() class attribute.

Parameters

• config – Karton config to use for service configuration

• identity – Karton service identity

• backend – Karton backend to use

abstract process_log(event: Dict[str, Any])→ None
The core log handler that should be overwritten in implemented log handlers

Parameters event – Dictionary containing the log event data

8.3 karton.core.Resource

karton.core.resource.Resource

alias of karton.core.resource.LocalResource

class karton.core.resource.LocalResource(name: str, content: Optional[Union[str, bytes]] = None, path:
Optional[str] = None, bucket: Optional[str] = None, metadata:
Optional[Dict[str, Any]] = None, uid: Optional[str] = None,
sha256: Optional[str] = None, fd: Optional[IO[bytes]] =
None, _flags: Optional[List[str]] = None, _close_fd: bool =
False)

Represents local resource with arbitrary binary data e.g. file contents.

Local resources will be uploaded to object hub (S3) during task dispatching.

Creating resource from bytes
sample = Resource("original_name.exe", content=b"X5O!P%@AP[4\
PZX54(P^)7CC)7}$EICAR-STANDARD-ANT...")

(continues on next page)

40 Chapter 8. Karton API reference

karton Documentation, Release 5.0.1

(continued from previous page)

Creating resource from path
sample = Resource("original_name.exe", path="sample/original_name.exe")

Parameters

• name – Name of the resource (e.g. name of file)

• content – Resource content

• path – Path of file with resource content

• bucket – Alternative S3 bucket for resource

• metadata – Resource metadata

• uid – Alternative S3 resource id

• sha256 – Resource sha256 hash

• fd – Seekable file descriptor

• _flags – Resource flags

• _close_fd – Close file descriptor after upload (default: False)

property content: bytes

Resource content. Reads the file if the file was not read before.

Returns Content bytes

classmethod from_directory(name: str, directory_path: str, compression: int = 8, in_memory: bool =
False, bucket: Optional[str] = None, metadata: Optional[Dict[str, Any]] =
None, uid: Optional[str] = None)→ karton.core.resource.LocalResource

Resource extension, allowing to pass whole directory as a zipped resource.

Reads all files contained in directory_path recursively and packs them into zip file.

Creating zipped resource from path
dumps = LocalResource.from_directory("dumps", directory_path="dumps/")

Parameters

• name – Name of the resource (e.g. name of file)

• directory_path – Path of the resource directory

• compression – Compression level (default is zipfile.ZIP_DEFLATED)

• in_memory – Don’t create temporary file and make in-memory zip file (default: False)

• bucket – Alternative S3 bucket for resource

• metadata – Resource metadata

• uid – Alternative S3 resource id

Returns LocalResource instance with zipped contents

property sha256: Optional[str]

Resource sha256

Returns Hexencoded resource SHA256 hash

8.3. karton.core.Resource 41

karton Documentation, Release 5.0.1

property size: int

Resource size

Returns Resource size

property uid: str

Resource identifier (UUID)

Returns Resource identifier

class karton.core.resource.RemoteResource(name: str, bucket: Optional[str] = None, metadata:
Optional[Dict[str, Any]] = None, uid: Optional[str] = None,
size: Optional[int] = None, backend:
Optional[KartonBackend] = None, sha256: Optional[str] =
None, _flags: Optional[List[str]] = None)

Keeps reference to remote resource object shared between subsystems via object storage (S3)

Should never be instantiated directly by subsystem, but can be directly passed to outgoing payload.

Parameters

• name – Name of the resource (e.g. name of file)

• bucket – Alternative S3 bucket for resource

• metadata – Resource metadata

• uid – Alternative S3 resource id

• size – Resource size

• backend – KartonBackend() to bind to this resource

• sha256 – Resource sha256 hash

• _flags – Resource flags

property content: bytes

Resource content. Performs download when resource was not loaded before.

Returns Content bytes

download()→ bytes
Downloads remote resource content from object hub into memory.

sample = self.current_task.get_resource("sample")

Ensure that resource will be downloaded before it will be
passed to processing method
sample.download()

self.process_sample(sample)

Returns Downloaded content bytes

download_temporary_file(suffix=None)→ Iterator[IO[bytes]]
Downloads remote resource into named temporary file.

42 Chapter 8. Karton API reference

karton Documentation, Release 5.0.1

sample = self.current_task.get_resource("sample")

with sample.download_temporary_file() as f:
contents = f.read()
path = f.name

Temporary file is deleted after exitting the "with" scope

Returns ContextManager with the temporary file

download_to_file(path: str)→ None
Downloads remote resource into file.

sample = self.current_task.get_resource("sample")

sample.download_to_file("sample/sample.exe")

with open("sample/sample.exe", "rb") as f:
contents = f.read()

Parameters path – Path to download the resource into

extract_temporary()→ Iterator[str]
If resource contains a Zip file, extracts files contained in Zip to the temporary directory.

Returns path of directory with extracted files. Directory is recursively deleted after leaving the context.

dumps = self.current_task.get_resource("dumps")

with dumps.extract_temporary() as dumps_path:
print("Fetched dumps:", os.listdir(dumps_path))

By default: method downloads zip into temporary file, which is deleted after extraction. If you want to load
zip into memory, call RemoteResource.download() first.

Returns ContextManager with the temporary directory

extract_to_directory(path: str)→ None
If resource contains a Zip file, extracts files contained in Zip into provided path.

By default: method downloads zip into temporary file, which is deleted after extraction. If you want to load
zip into memory, call RemoteResource.download() first.

Parameters path – Directory path where the resource should be unpacked

loaded()→ bool
Checks whether resource is loaded into memory

Returns Flag indicating if the resource is loaded or not

property sha256: Optional[str]

Resource sha256

Returns Hexencoded resource SHA256 hash

8.3. karton.core.Resource 43

karton Documentation, Release 5.0.1

property size: int

Resource size

Returns Resource size

property uid: str

Resource identifier (UUID)

Returns Resource identifier

unload()→ None
Unloads resource object from memory

zip_file()→ Iterator[zipfile.ZipFile]
If resource contains a Zip file, downloads it to the temporary file and wraps it with ZipFile object.

dumps = self.current_task.get_resource("dumps")

with dumps.zip_file() as zipf:
print("Fetched dumps: ", zipf.namelist())

By default: method downloads zip into temporary file, which is deleted after leaving the context. If you
want to load zip into memory, call RemoteResource.download() first.

If you want to pre-download Zip under specified path and open it using zipfile module, you need to do this
manually:

dumps = self.current_task.get_resource("dumps")

Download zip file
zip_path = "./dumps.zip"
dumps.download_to_file(zip_path)

zipf = zipfile.Zipfile(zip_path)

Returns ContextManager with zipfile

8.4 karton.core.Task

class karton.core.task.Task(headers: Dict[str, Any], payload: Optional[Dict[str, Any]] = None,
payload_persistent: Optional[Dict[str, Any]] = None, priority:
Optional[karton.core.task.TaskPriority] = None, parent_uid: Optional[str] =
None, root_uid: Optional[str] = None, orig_uid: Optional[str] = None, uid:
Optional[str] = None, error: Optional[List[str]] = None)

Task representation with headers and resources.

Parameters

• headers – Routing information for other systems, this is what allows for evaluation of given
system usefulness for given task. Systems filter by these.

• payload – Any instance of dict - contains resources and additional informations

• payload_persistent – Persistent payload set for whole task subtree, propagated from ini-
tial task

44 Chapter 8. Karton API reference

karton Documentation, Release 5.0.1

• priority – Priority of whole task subtree, propagated from initial task like pay-
load_persistent

• parent_uid – Id of a routed task that has created this task by a karton with send_task()

• root_uid – Id of an unrouted task that is the root of this task’s analysis tree

• orig_uid – Id of an unrouted (or crashed routed) task that was forked to create this task

• uid – This tasks unique identifier

• error – Traceback of a exception that happened while performing this task

add_payload(name: str, content: Any, persistent: bool = False)→ None
Add payload to task

Parameters

• name – Name of the payload

• content – Payload to be added

• persistent – Flag if the payload should be persistent

add_resource(name: str, resource: karton.core.resource.ResourceBase, persistent: bool = False)→ None
Add resource to task.

Alias for add_payload()

Deprecated since version 3.0.0: Use add_payload() instead.

Parameters

• name – Name of the resource

• resource – Resource to be added

• persistent – Flag if the resource should be persistent

derive_task(headers: Dict[str, Any])→ karton.core.task.Task
Creates copy of task with different headers, useful for proxying resource with added metadata.

class MZClassifier(Karton):
identity = "karton.mz-classifier"
filters = {

"type": "sample",
"kind": "raw"

}

def process(self, task: Task) -> None:
sample = task.get_resource("sample")
if sample.content.startswith(b"MZ"):

self.log.info("MZ detected!")
task = task.derive_task({

"type": "sample",
"kind": "exe"

})
self.send_task(task)

self.log.info("Not a MZ :<")

Changed in version 3.0.0: Moved from static method to regular method:

Task.derive_task(headers, task) must be ported to task.derive_task(headers)

8.4. karton.core.Task 45

karton Documentation, Release 5.0.1

Parameters headers – New headers for the task

Returns Copy of task with new headers

get_payload(name: str, default: Optional[Any] = None)→ Any
Get payload from task

Parameters

• name – name of the payload

• default – Value to be returned if payload is not present

Returns Payload content

get_resource(name: str)→ karton.core.resource.ResourceBase
Get resource from task.

Ensures that payload contains an Resource object. If not - raises TypeError

Parameters name – Name of the resource to get

Returns karton.ResourceBase - resource with given name

has_payload(name: str)→ bool
Checks whether payload exists

Parameters name – Name of the payload to be checked

Returns If tasks payload contains a value with given name

is_payload_persistent(name: str)→ bool
Checks whether payload exists and is persistent

Parameters name – Name of the payload to be checked

Returns If tasks payload with given name is persistent

iterate_resources()→ Iterator[karton.core.resource.ResourceBase]
Get list of resource objects bound to Task

Returns An iterator over all task resources

remove_payload(name: str)→ None
Removes payload for the task

If payload doesn’t exist or is persistent - raises KeyError

Parameters name – Payload name to be removed

walk_payload_bags()→ Iterator[Tuple[Dict[str, Any], str, Any]]
Iterate over all payload bags and direct payloads contained in them

Generates tuples (payload_bag, key, value)

Returns An iterator over all task payload bags

walk_payload_items()→ Iterator[Tuple[str, Any]]
Iterate recursively over all payload items

Generates tuples (path, value).

Returns An iterator over all task payload values

46 Chapter 8. Karton API reference

karton Documentation, Release 5.0.1

8.5 karton.core.Config

class karton.core.config.Config(path: Optional[str] = None, check_sections: Optional[bool] = True)
Simple config loader.

Loads configuration from paths specified below (in provided order):

• /etc/karton/karton.ini (global)

• ~/.config/karton/karton.ini (user local)

• ./karton.ini (subsystem local)

• <path> optional, additional path provided in arguments

It is also possible to pass configuration via environment variables. Any variable named KARTON_FOO_BAR
is equivalent to setting ‘bar’ variable in section ‘foo’ (note the lowercase names).

Environment variables have higher precedence than those loaded from files.

Parameters

• path – Path to additional configuration file

• check_sections – Check if sections redis and s3 are defined in the configuration

append_to_list(section_name: str, option_name: str, value: Any)→ None
Appends value to a list in configuration

get(section_name: str, option_name: str, fallback: Optional[Any] = None)→ Any
Gets value from configuration or returns fallback (None by default) if value was not set.

getboolean(section_name: str, option_name: str, fallback: bool)→ bool
getboolean(section_name: str, option_name: str)→ Optional[bool]

Gets value from configuration or returns fallback (None by default) if value was not set. Value is coerced
to bool type.

See also:

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.getboolean

getint(section_name: str, option_name: str, fallback: int)→ int
getint(section_name: str, option_name: str)→ Optional[int]

Gets value from configuration or returns fallback (None by default) if value was not set. Value is coerced
to int type.

has_option(section_name: str, option_name: str)→ bool
Checks if configuration value is set

has_section(section_name: str)→ bool
Checks if configuration section exists

load_from_dict(data: Dict[str, Dict[str, Any]])→ None
Updates configuration values from dictionary compatible with ConfigParser.read_dict. Accepts value
in native type, so you don’t need to convert them to string.

None values are treated like missing value and are not added.

8.5. karton.core.Config 47

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.getboolean

karton Documentation, Release 5.0.1

{
"section-name": {

"option-name": "value"
}

}

set(section_name: str, option_name: str, value: Any)→ None
Sets value in configuration

48 Chapter 8. Karton API reference

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

49

karton Documentation, Release 5.0.1

50 Chapter 9. Indices and tables

PYTHON MODULE INDEX

k
karton, 37
karton.core.resource, 40
karton.core.task, 44

51

karton Documentation, Release 5.0.1

52 Python Module Index

INDEX

A
add_payload() (karton.core.task.Task method), 45
add_post_hook() (karton.core.Consumer method), 38
add_pre_hook() (karton.core.Consumer method), 39
add_resource() (karton.core.task.Task method), 45
append_to_list() (karton.core.config.Config method),

47
args_description() (karton.core.Consumer class

method), 39
args_description() (karton.core.Producer class

method), 37
args_parser() (karton.core.Consumer class method),

39
args_parser() (karton.core.Producer class method),

37

C
Config (class in karton.core.config), 47
config_from_args() (karton.core.Consumer class

method), 39
config_from_args() (karton.core.Producer class

method), 37
Consumer (class in karton.core), 38
content (karton.core.resource.LocalResource property),

41
content (karton.core.resource.RemoteResource prop-

erty), 42

D
derive_task() (karton.core.task.Task method), 45
download() (karton.core.resource.RemoteResource

method), 42
download_temporary_file() (kar-

ton.core.resource.RemoteResource method),
42

download_to_file() (kar-
ton.core.resource.RemoteResource method),
43

E
extract_temporary() (kar-

ton.core.resource.RemoteResource method),

43
extract_to_directory() (kar-

ton.core.resource.RemoteResource method),
43

F
from_directory() (kar-

ton.core.resource.LocalResource class
method), 41

G
get() (karton.core.config.Config method), 47
get_payload() (karton.core.task.Task method), 46
get_resource() (karton.core.task.Task method), 46
getboolean() (karton.core.config.Config method), 47
getint() (karton.core.config.Config method), 47

H
has_option() (karton.core.config.Config method), 47
has_payload() (karton.core.task.Task method), 46
has_section() (karton.core.config.Config method), 47

I
is_payload_persistent() (karton.core.task.Task

method), 46
iterate_resources() (karton.core.task.Task method),

46

K
karton

module, 37
Karton (class in karton.core), 40
karton.core.resource

module, 40
karton.core.task

module, 44
karton_from_args() (karton.core.Consumer class

method), 39
karton_from_args() (karton.core.Producer class

method), 38

53

karton Documentation, Release 5.0.1

L
load_from_dict() (karton.core.config.Config method),

47
loaded() (karton.core.resource.RemoteResource

method), 43
LocalResource (class in karton.core.resource), 40
log (karton.core.Consumer property), 39
log (karton.core.Producer property), 38
log_handler (karton.core.Consumer property), 39
log_handler (karton.core.Producer property), 38
LogConsumer (class in karton.core), 40

M
main() (karton.core.Consumer method), 39
module

karton, 37
karton.core.resource, 40
karton.core.task, 44

P
process() (karton.core.Consumer method), 39
process_log() (karton.core.LogConsumer method), 40
Producer (class in karton.core), 37

R
RemoteResource (class in karton.core.resource), 42
remove_payload() (karton.core.task.Task method), 46
Resource (in module karton.core.resource), 40

S
send_task() (karton.core.Producer method), 38
set() (karton.core.config.Config method), 48
setup_logger() (karton.core.Consumer method), 39
setup_logger() (karton.core.Producer method), 38
sha256 (karton.core.resource.LocalResource property),

41
sha256 (karton.core.resource.RemoteResource prop-

erty), 43
size (karton.core.resource.LocalResource property), 41
size (karton.core.resource.RemoteResource property),

43

T
Task (class in karton.core.task), 44

U
uid (karton.core.resource.LocalResource property), 42
uid (karton.core.resource.RemoteResource property), 44
unload() (karton.core.resource.RemoteResource

method), 44

W
walk_payload_bags() (karton.core.task.Task method),

46

walk_payload_items() (karton.core.task.Task
method), 46

Z
zip_file() (karton.core.resource.RemoteResource

method), 44

54 Index

	Breaking changes
	What is changed in Karton 5.0.0
	What is changed in Karton 4.0.0
	What is changed in Karton 3.0.0

	Getting started
	Installation
	Configuration
	Docker Compose development setup
	Writing your first Producer and Consumer
	Command-line interface (CLI)

	Karton service examples
	Producer services
	Consumer services
	Karton services (Producer + Consumer)
	Log consumer

	Headers, payloads and resources
	Task headers
	Filter patterns
	Task payload
	Resource objects
	Directory resource objects
	Persistent payload

	Configuration and customization
	Basic configuration
	Karton System configuration
	Extending configuration
	Customizing ready-made Karton services

	Advanced concepts
	Routed and unrouted tasks (task forking)
	Task tree (analysis) and task life cycle
	Handling logging
	Consumer queue persistence
	Prioritized tasks
	Extending configuration
	Karton-wide and instance-wide configuration

	Passing tasks to the external queue
	Busy waiting

	Writing unit tests
	Basic unit test
	Testing resources

	Karton API reference
	karton.core.Producer, karton.core.Consumer
	karton.core.LogConsumer
	karton.core.Resource
	karton.core.Task
	karton.core.Config

	Indices and tables
	Python Module Index
	Index

